SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Mechanics of Solids (23ME0304)

Course & Branch: B.Tech (ME) Year & Sem: II & I

Regulation: R23

<u>UNIT -I</u>

SIMPLE STRESSES & STRAINS

1	Answer the following		
	(a) Define strength and stiffness		
	(b) State Hook's law		1014
	(c) What are the types of elastic constants		10101
	(d) Define Factor of safety		
	(e) State strain energy		
2	a) Define stress and strain. Explain different types of stresses and strains.	[L1][CO1]	[5M]
	b) Draw and explain Stress-strain curve for a mild steel bar.	[L1][CO1]	[5M]
3	a) A rod 150 cm long and of diameter 2.0 cm is subjected to an axial pull of		
	20 kN. If the modulus of elasticity of the material of the rod is 2 x 10^5	[L3][CO1]	[5M]
	N/mm ² determine :(i) stress,(ii) strain, and: (iii) elongation of the rod		
	b) Find the Young's Modulus of a brass rod of diameter 25 mm and of	[L3][CO1]	[5M]
	length 250 mm. which is subjected to a tensile load of 50 kN when the		
	extension of the rod is equal to 0.3 mm.		
4	A brass bar, having cross-sectional area of 1000 mm ² , is subjected to axial	[L3][CO1]	10M
	forces as shown in figure. Find the total elongation of the bar. Take		
	$E=1.05 \times 10^5 \text{ N/mm}^2$.		
	$A B C D \\ 10 kN \\ 20 kN \\ 600 mm \\ 600 mm \\ 600 mm \\ 1 m \\ 1 m \\ 1.20 m \\$		
5	A compound tube consists of a steel tube 140 mm internal diameter and 160	[L3][CO1]	[10M]
	mm external diameter and an outer brass tube 160 mm internal diameter and		
	180 mm external diameter. The two tubes are of the same length. The		
	compound tube carries an axial load of 900 kN. Find the stresses and the		

	load carried by each tube and the amount it shortens. Length of each tube is		
	140 mm. Take E for steel as 2 x 10^5 N/mm ² and for brass as 1 x 10^5 N/mm ²		
6	(a) A rod is 2 m long at a temperature of 10°C. Find the expansion of the		
	rod when the temperature is raised to 80°C. If this expansion is prevented,	[] 3][CO1]	[5M]
	find the stress induced in the material of the rod. Take $E = 1.0 \times 10^5 MN/m^2$		[3141]
	and $\alpha = 0.000012$ per degree centigrade.		
	(b) A steel rod of 3 cm diameter and 5 m long is connected to two grips and		
	the rod is maintained at a temperature of 95°C. Determine the stress and pull		
	exerted when the temperature falls to 30°C, if		[5M]
	(i) the ends do not yield, and		
	(ii) the ends yield by 0.12 cm.		
	Take E = 2 x 10^5 MN/m ² and α = 12 x 10^{-6} / ^{0}C		
7	(a) The stresses at a point in a bar are 200 N/mm ² (tensile) and 100 N/mm ²		
	(compressive). Determine the resultant stress in magnitude and direction on		[5M]
	a plane inclined at 60° to the axis of the major stress. Also determine the		
	maximum intensity of shear stress in the material at the point.		
	(b) The tensile stresses at a point across two mutually perpendicular planes		
	are 120 N/mm ² and 60 N/mm ² . Determine the normal, tangential and	[L3][CO1]	[5M]
	resultant stresses on a plane inclined at 30° to the axis of the minor stress.		
8	(a) Define and Derive Mohr's circle with neat sketch	[L1][C01]	[5M]
	(b) The tensile stresses at a point across two mutually perpendicular planes		
	are 120 N/mm ² and 60 N/mm ² . Determine the normal, tangential and	[L3][CO1]	
	resultant stresses on a plane inclined at 30° to the axis of minor stress using		[5M]
	Mohr's circle.		
9	(a) For a material Young's modulus given as $1.4 \times 10^5 \text{ N/mm}^2$ and possion's		[5] (1]
	ratio 0.28. Calculate the bulk Modulus.	[L3][CO1]	[3][1]
	(b) Determine the Poisson's ratio and bulk modulus of a material, for which		
	Young's modulus is $1.2 \times 10^5 \text{ N/mm}^2$ and modulus of rigidity is 4.8×10^4	[L3][CO1]	[5M]
	N/mm ² .		
10	Derive the expressions for strain energy stored in a body when load is		
	applied	[L3][CO1]	[10 M]
	(i) Gradually		[10111]
	(ii) Suddenly		

11(a) Calculate instantaneous stress produced in a bar 10 cm² in area and 3 m
long by the sudden application of a tensile load of unknown magnitude ,if
the extension of the bar due to suddenly applied load is 1.5mm. Also
determine the suddenly applied load. Take $E = 2x10^5$ N/mm².[L3][CO1][5M](b) A steel rod is 2 m long and 50 mm in diameter. An axial pull of 100 kN
is suddenly applied to the rod. Calculate the instantaneous stress induced
and also the instantaneous elongation produced in the rod. Take E = 200[L4][CO1][5M]

<u>UNIT -II</u>

SHEAR FORCE AND BENDING MOMENT

1	 Answer the following questions (a) Classify the types of beams (b) What is meant by cantilever beam (c) Define shear force and bending moment at a section (d) What are the types of transverse loads (e) State point of contra flexure 	[L1][CO2]	[10 M]
2	A cantilever beam of length 2m carries the point loads as shown in Fig. Draw the SFD and BMD for the given beam. $\underbrace{300 \text{ N}}_{A} \underbrace{500 \text{ N}}_{B} \underbrace{500 \text{ N}}_{C} \underbrace{600 \text{ N}}_{D} \underbrace{600 \text{ N}}_{C} 600 \text{ N$	[L1][CO2]	[10 M]
3	A cantilever beam of length 3 m carries a uniformly distributed load of 1.5 kN/m run over a length of 2 m from the free end. Draw SFD and BMD for the beam.	[L1][CO2]	[10M]
4	A cantilever of length 2 m carries a uniformly distributed, load of 1.5 kN/m run over the whole length and a point load of 2 kN at a distance of 0.5 m from the free end. Draw the S.F. and B.M. diagrams for the cantilever.	[L1][CO2]	[10 M]
5	A cantilever 1.5 m long is loaded with a uniformly distributed load of 2 kN/m run over a length of 1.25 m from the free end. It also carries a point load of 3 kN at a distance of 0.25 m from the free end. Draw the shear force and bending moment diagrams of the cantilever.	[L1][CO2]	[10M]

R23

6	A cantilever of length 5.0 m is loaded as shown in Fig. Draw the S.F. and		
	B.M. diagrams for the cantilever.		
	A = D = C = B $A = 1.5 m = 4 = 2m = 4 p = m$	[L1][CO2]	[10 M]
	1 1 1		
7	A cantilever of length 4.0 m carries a gradually varying load, zero at the free	[L1][CO2]	[10M]
	end to 2kN/m at the fixed end. Draw the S.F and B.M diagram .for the beam		
8	A simply supported beam of length 5M ,carries point load of 3 kN and 6 kN		
	at distance of 2m and 4m from the left end . Draw the shear force and	[L1][CO2]	[10M]
	bending moment for the beam		
9	Draw the shear force and bending moment diagram for a simply supported of		
	length 5m as shown in fig.		
	$A \xrightarrow{1 \text{ m}} 2 \text{ m} \xrightarrow{2 \text{ m}} 2 \text{ m} \xrightarrow{2 \text{ m}} B$	[L1][CO2]	[10 M]
10	Draw the shear force and bending moment diagram for a simply supported		
	beam of length 9m and carrying a uniformly distributed load of 10 kN/m for	[L1][CO2]	[10 M]
	a distance of 6 m from the left end. Also calculate the maximum bending		
	moment in the section.		
11	A simply supported beam of length 10m carries the UDL and two-point loads		
	as shown in fig. Draw S.F. and B.M. diagram for the beam shown in figure.		
	Also calculate the maximum bending moment.		
	$R_{A} = \frac{50 \text{ kN}}{10 \text{ kN/m}} = \frac{40 \text{ kN}}{10 \text{ kN/m}} = \frac{40 \text{ kN}}{10 \text{ kN/m}} = \frac{40 \text{ kN}}{10 \text{ kN/m}} = \frac{100 \text{ kN}}{10 \text{ kN}} = \frac{100 \text{ kN}$	[L1][CO2]	[10 M]

R23

UNIT III

(Flexural stress and Shear stress)

1	Answer the following			
	a) State the theory of simple bending			
	b) Write the assumptions of simple bending	т 1		[10 M]
	c) Define section modulus	LI	$\begin{bmatrix} LI \end{bmatrix} \begin{bmatrix} C \\ O3 \end{bmatrix}$	
	d) Define shear stress distribution			
	e) Draw the shear stress distribution in solid circular shaft			
2	Derive the expression for simple bending moment equation with assumptions	L3	[L3][C O3]	[10M]
3	A rectangular beam 300 mm deep is simply supported over a span of 4 metres.			
	Determine the uniformly distributed load per metre which the beam may carry,	L3	[L3][C	[10M]
	if the bending stress should not exceed 120 N/mm ² . Take I = 8 x 10^6 mm ⁴		O3]	
4	A square beam 20 mm x 20 mm in section and 2 m long is supported at the			
	ends. The beam fails when a point load of 400 N is applied at the centre of the	T 1		[10 M]
	beam. What uniformly distributed load per metre length will break a cantilever	LI	[L4][C 03]	
	of the same material 40 mm wide, 60 mm deep and 3 m long			
5	A beam is simply supported and carries a uniformly distributed load of 40			
	kN/m run over the whole span. The section of the beam is rectangular having			
	depth as 500 mm. If the maximum stress in the material of the beam is 120	L3	[L3][C	[10M]
	$N\!/mm^2$ and moment of inertia of the section is 7 x 10^8mm^4 , find the span of		03]	
	the beam.			
6	A timber beam of rectangular section is simply supported at the ends and			
	carries a point load at the center of the beam. The maximum bending stress is	12		[10]
	12 N/mm^2 and maximum shearing stress is 1 N/mm^2 , find the ratio of the span	LJ	03]	
	to the depth.			
7		L3	[L3][C	[10M]
			03]	
8	A rectangular beam 100 mm wide and 250 mm deep is subjected to a maximum			
	shear force of 50 kN. Determine: (i) Average shear stress, (ii) Maximum shear	L3	[L3][C	[10M]
	stress, and (iii) Shear stress at a distance of 25 mm above the neutral axis.		03]	
9	A simply supported wooden beam of span 1.3 m having a cross-section 150			
	mm wide by 250 mm deep carries a point load W at the centre. The permissible	L3	[L3][C	[10 M]
	stress are 7N/mm ² in bending and 1 N/mm ² in shearing. Calculate the safe load		03]	
	W.			

10	A beam of triangular cross-section is subjected to a sheer force of 50 kN. The	[L3][CO3]	[10M]
	base width of the section is 250mm and height 200mm . The beam is placed with		
	its base horizontally. Find the maximum shear stress and the shear stress at the		
	N.A.		
11	A circular beam of 100mm diameter is subjected to a shear force of 5kN.	[L3][CO3]	
	Calculate (i) Average shear stress (ii) Maximum shear stress and (iii) Shear		[10M]
	stress at a distance of 40mm from NA		

UNIT IV

(Deflection of Beams and Torsion)

1	Answer the following questions	L1	[L1][C	[10M]
	a) What are the methods for finding slope and deflection of a beam		O4]	
	b) Define deflection of beam			
	c) State Maculays method			
	d) Write Torsion equation			
	e) What are the assumptions made in Torsion equation			
2	A beam 6 m long, simply supported at its ends, is carrying a point load of	L3	[L3][C	[10M]
	50 kN at its centre. The moment of inertia of the beam is given as equal to		O4]	
	$78 \times 10^6 \text{ mm}^4$. If E for the material of the beam =2.1 x 10s N/mm ² , calculate			
	(i) deflection at the centre of the beam and (ii) slope at the supports.			
3	A beam of uniform rectangular section 200 mm wide and 300 mm deep is	L3	[L3][C	[10M]
	simply supported at its ends. It carries a uniformly distributed load of 9		O4]	
	KN/m run over the entire span of 5 m. If the value of E for the beam			
	material is $1 \times 10^4 \text{ N/mm}^2$, find:			
	(i) The slope at the supports and (ii) Maximum deflection.			
4	Determine: (i) slope at the left support, (ii) deflection under the load and	L3	[L3][C	[10M]
	(iii) maximum deflection of a simply supported beam of length 5 m, which		O4]	
	is carrying a point load of 5 KN at a distance of 3 m from the left end. Take			
	$E = 2 \times 10^5 \text{ N/mm}^2$ and $I = 1 \times 10^8 \text{ mm}^4$.			
5	A beam of length 5 m and of uniform rectangular section is supported at its	L3	[L3][C	[10M]
	ends and carries uniformly distributed load over the entire length. Calculate		04]	
	the depth of the section if the maximum permissible bending stress is 8			
	N/mm^2 and central deflection is not to exceed 10 mm. Take the value of E			
	$= 1.2 \text{ x } 10^4 \text{ N/mm}^2.$			

6	A beam of length 5 m and of uniform rectangular section is simply	[L3][CO4]	[10M]
	supported at its ends. It carries a uniformly distributed load of 9 kN/m run		
	over the entire length. Calculate the width and depth of the beam if permissible bending stress is 7 N/mm^2 and central deflection is not to		
	exceed 1 cm. Take E for beam material = $1 \times 10^4 \text{ N/mm}^2$		
7	a) Derive pure torsion equation for a circular shaft with assumptions.	[L3][CO4]	[5M]
	b) The shearing stress is a solid shaft is not to exceed 40 N/mm ² when the	[L3][CO4]	[5M]
	torque transmitted is 20000 N-m. Determine the minimum diameter of the		
	shaft.		
8	A hollow shaft of external diameter 120 mm transmits 300 kW power at	[L3][CO4]	[10M]
	200 r.p.m. Determine the maximum internal diameter if the maximum		
	stress in the shaft is not to exceed 60 N!mm ²		
9	A solid steel shaft has to transmit 75 KW at 200 rpm. Taking allowable	[L3][CO4]	[10M]
	shear stress as 70 N/mm ² , find suitable diameter for the shaft, if the		
	maximum torque transmitted at each revolution exceeds the mean by 30%.		
10	Determine the diameter of a solid steel shaft which will transmit 90 kW at	[L3][CO4]	[10M]
	160 r.p.m. Also determine the length of the shaft if the twist must not		
	exceed 1° over the entire length. The maximum shear stress is limited to 60		
	N/mm^2 . Take the value of modulus of rigidity= 8 x 104 N/mm^2		
11	A solid circular shaft transmits 75 kW power at 200 r.p.m. Calculate the	[L1][CO4]	[10M]
	shaft diameter, if the twist in the shaft is not to exceed 1° in 2 metres length		
	of shaft, and shear stress is limited to 50 N/mm ² . Take $C = 1 \times 10 \text{s}$ N/mm ²		

<u>UNIT V</u>

(Thin Cylinders , Thick Cylinders and Columns)

1	Answer the following questions	[L1][CO5]	[10M]
	a) Define thin and thick cylinder		
	b) State circumferential stress (or) hoop stress		
	c) What are the stress developed in the cylinders under pressure		
	d) Define Column		
	e) Write limitations of rankines formula		
2	a) Derive expression for circumferential stress in thin cylinder.	[L3][CO5]	[5M]
	b) A cylindrical pipe of diameter 1.5m and thickness 1.5cm is subjected to	[L3][CO5]	[5M]
	an internal fluid pressure of 1.2 N/mm ² . Determine:		
	(i) Longitudinal stress developed in the pipe, and		
	ii) Circumferential stress developed in the pipe.		
3	A cylindrical thin drum 80cm in diameter and 3m long has a shell	[L3][CO5]	[10M]
	thickness of 1cm. If the drum is subjected to an internal pressure of 2.5		
	N/mm^2 , Take E= 2x 10 ⁵ N/mm ² and Poisson's ratio 0.25		
	Determine		
	(i) change in diameter (ii) change in length and (iii) Change in volume.		
4	A cylindrical shell 90 cm long 20 cm internal diameter having thickness	[L3][CO5]	[10M]
	of metal as 8 mm is filled with fluid at atmospheric pressure. If an		
	additional 20 cm^3 of fluid is pumped into the cylinder, find (i) the pressure		
	exerted by the fluid on the cylinder and (ii) the hoop stress induced. Take		
	$E = 2 \times 10^5 \text{ N/mm}^2$ and $\mu = 0.3$.		
5	A closed cylindrical vessel made of steel plates 4 mm thick with plane	[L3][CO5]	[10M]
	and, carries fluid under a pressure of 3 N/ mm^2 . The dia. of cylinder is 30		
	cm and length is 80 cm, calculate the longitudinal and hoop stresses in the		
	cylinder wall and determine the change in diameter, length and volume of		
	the cylinder. Take $E = 2 \times 10^{5} \text{ N/mm}^{2}$ and Poisson's ratio is 0.286		
6	A hollow cylindrical drum 600 mm in diameter and 3 m long, has a shell	[L3][CO5]	[5M]
	thickness of 10 mm. If the drum is subjected to an internal air pressure of		
	3 N/mm2, determine the increase in its volume. Take $E = 2 \times 10^5 \text{ N/mm}^2$		
	and Poisson's ratio = 0.3 for the material.		

7	'a) A vessel in the shape of a spherical shell of 1.20 m internal diameter	[L3][CO5]	[5M]
	and 12 mm. shell thickness is subjected to pressure of 1.6 N/mm ²		
	Determine the stress induced in the material of the vessel.		
	b) A spherical vessel 1.5 m diameter is subjected to an internal pressure	[L3][CO5]	[5M]
	of 2 N/mm2. Find the thickness of the plate required if maximum stress is		
	not to exceed 150 N/mm2 and joint efficiency is 75%.		
8	Determine the maximum and minimum hoop stress across the section of a	[L3][CO5]	[10M]
	pipe of 400 mm internal diameter and 100 mm thick, when the pipe		
	contains a fluid at a pressure of 8 N/mm ² . Also sketch the radial pressure		
	and hoop stress distribution across the section.		
9	a) Write the assumptions made in the Euler's column theory.	[L1][CO6]	[5M]
	b) Write the end conditions for long columns and state the difference	[L1][CO6]	[5M]
	between long columns and short columns.		
10	between long columns and short columns. A column of timber section 15 cm x 20 cm is 6 metre long both ends being	[L3][CO6]	[10M]
10	between long columns and short columns. A column of timber section 15 cm x 20 cm is 6 metre long both ends being fixed. If the Young's modulus for timber =17.5 KN/mm ² , determine: (i) Crippling load and	[L3][CO6]	[10M]
10	 between long columns and short columns. A column of timber section 15 cm x 20 cm is 6 metre long both ends being fixed. If the Young's modulus for timber =17.5 KN/mm², determine: (i) Crippling load and (ii) Safe load for the column if factor of safety = 3. 	[L3][CO6]	[10M]
10	between long columns and short columns.A column of timber section 15 cm x 20 cm is 6 metre long both ends beingfixed. If the Young's modulus for timber =17.5 KN/mm², determine:(i)Crippling load and(ii)Safe load for the column if factor of safety = 3.Using Euler's formula, calculate the critical stresses for a series of struts	[L3][CO6] [L3][CO6]	[10M]
10	 between long columns and short columns. A column of timber section 15 cm x 20 cm is 6 metre long both ends being fixed. If the Young's modulus for timber =17.5 KN/mm², determine: (i) Crippling load and (ii) Safe load for the column if factor of safety = 3. Using Euler's formula, calculate the critical stresses for a series of struts having slenderness ratio of 40, 80, 120, 160 and 200 under the following 	[L3][CO6] [L3][CO6]	[10M]
10	between long columns and short columns. A column of timber section 15 cm x 20 cm is 6 metre long both ends being fixed. If the Young's modulus for timber =17.5 KN/mm ² , determine: (i) Crippling load and (ii) Safe load for the column if factor of safety = 3. Using Euler's formula, calculate the critical stresses for a series of struts having slenderness ratio of 40, 80, 120, 160 and 200 under the following conditions:	[L3][CO6]	[10M]
10	 between long columns and short columns. A column of timber section 15 cm x 20 cm is 6 metre long both ends being fixed. If the Young's modulus for timber =17.5 KN/mm², determine: (i) Crippling load and (ii) Safe load for the column if factor of safety = 3. Using Euler's formula, calculate the critical stresses for a series of struts having slenderness ratio of 40, 80, 120, 160 and 200 under the following conditions: (i) Both ends hinged and 	[L3][CO6]	[10M]

PREPARED BY: Dr.S.SURESH